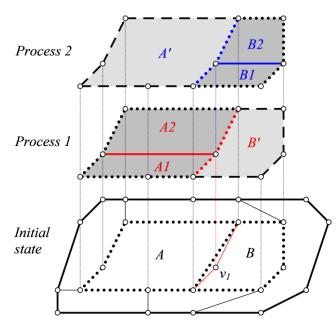

The 7th Land Administration Domain Model Workshop

Zagreb, 11.-14.04.2018.

Application of workflow management system to the modelling of processes in land administration systems

Saša Vranić, assist. prof. Hrvoje Matijević, prof. Miodrag Roić



Background

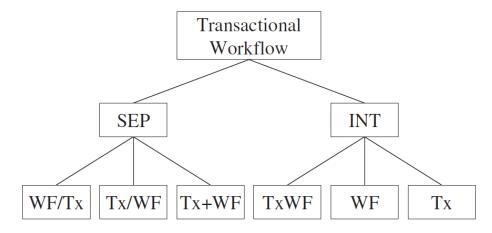
- Efficiency important in every administrative domain
 - Land administration as well
- WFMS -> efficient process management
- Transactional WFMS
 - Integration of transactional concepts
 - Ensuring consistency of data

Research idea

- Increase efficiency of land administration
 - Application of WFMS
 - Netherlands (van Osch and Lemmen, 2004)
 - Indonesia (Sari, 2010)
- Processes over spatial data are complex
- If spatial data are supported than non-spatial should be also
- Problem
 - Only a few papers for transactions/processes over spatial data

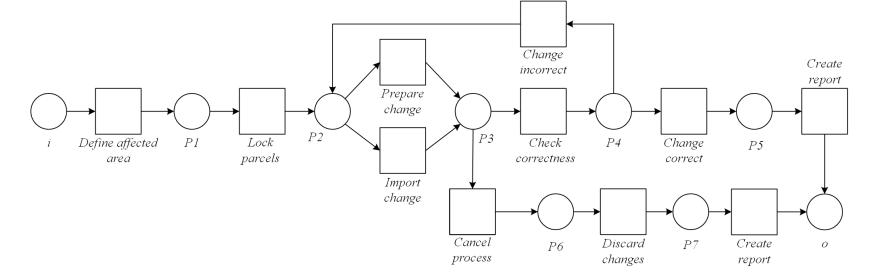
Research approach

• Questions:

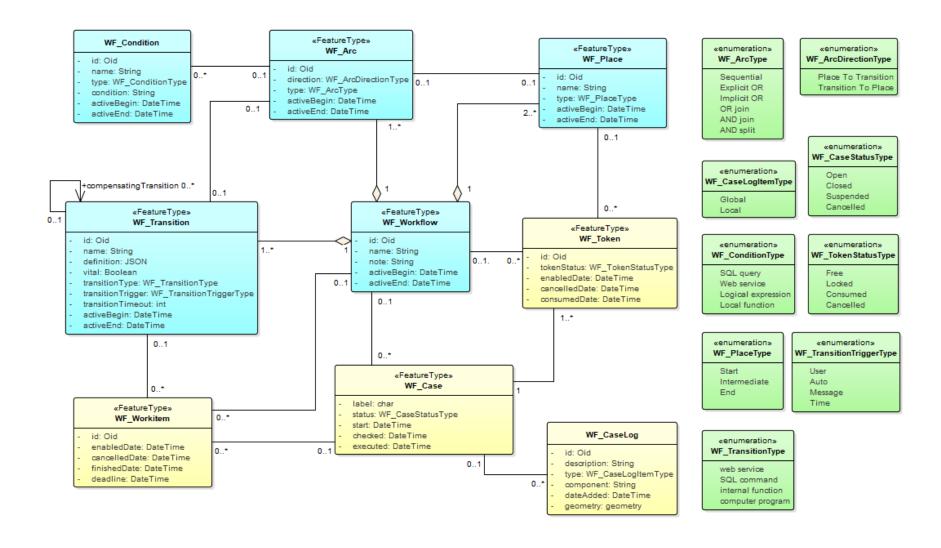

- Can transactional WFMS be used to model processes over spatial component of LA data
- How could LADM be extended to support processes using transactional WFMS
- Test case on polygon based cadastral parcels
- Conceptual data model of transactional WFMS

Workflow management system

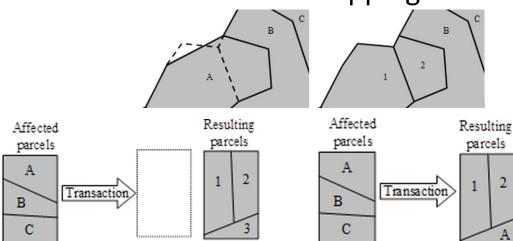
- Result of need for more efficient and flexible process management
- Support for collaboration of users
- Support for heterogenous IT environments
 - Web services
 - Invoking applications
 - Executing SQL queries and DB procedures
 - Blockchain technology
- Disadvantages
 - Weak support for consistency and
 - Recovery in case of failure


Transactional WFMS

- Overcome disadvantages of WFMS
- Integration of transactions and WFMS (Grefen & Vonk, 2006)
- Spatial WFMS
 - Weak or no support for transactional concepts
 - Complex collaborative operations on spatial data

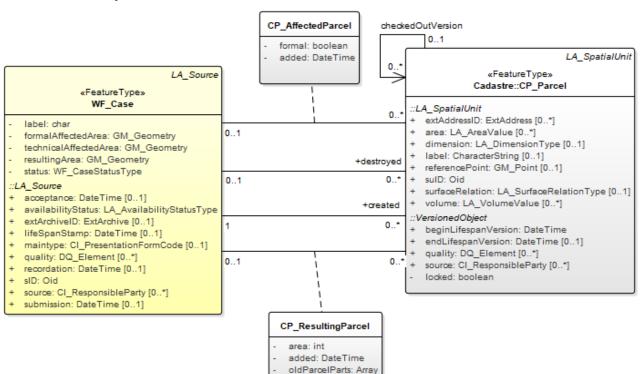

Modelling of processes

- Various notations
 - BPMN
 - UML AD
 - WF(Petri) nets

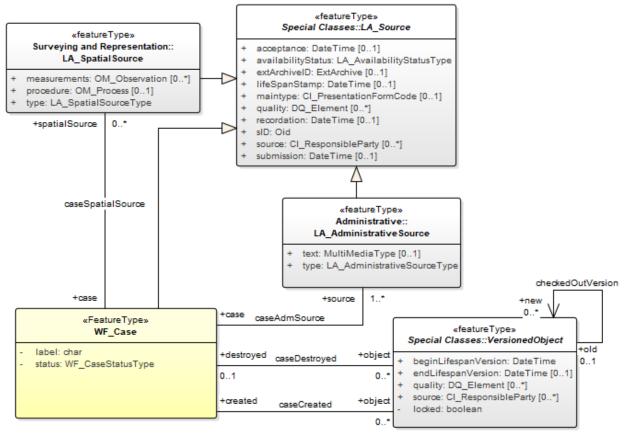

- Petri nets
 - Solid mathematical background
 - Simple notation

Generic conceptual model

Test case


- Integrity constraints defined in Vranić, S., Matijević, H., & Roić, M. (2015). Modelling outsourceable transactions on polygon-based cadastral parcels. International Journal of Geographical Information Science, 29(3):454–474.
 - Transaction type
 - Planar partition
 - Parcel version overlapping

Combination	Affected	Resulting	Affected	Affected area constant resulting	Affected area variant resulting	Transaction
2 (3)	0	1m		n/a	1	Geometry registration
4 (7)	1n	0	A	n/a		Geometry deregistration
5	1	1	A	n/a	A	Geometry correction
5a	n	n	A B	В	В	Multi geometry correction
6a	1	m	A	1 2 3	1 2 3	Splitting
6b	1	m	A	A 2 3	A 2 3	Deduction
8a	n	1	A B	1	1	Joining
8b	n	1	A B	A	А	Annexation
9	n	m	A B	1 2 3	1 2 3	Reallocation


Support for spatial component of parcels

- Spatial definition of affected area
- Ensuring geometric and topological correctness
 - Integrity constraints from (Vranić et al., 2015)
- Ensuring serializability
 - Pessimistic manner
 - Locking parcels in the affected area

Integration of WFMS to LADM

- Case is descendant of a source
- Relationships to other descendants
 - LA_AdministrativeSource
 - LA_SpatialSource
- Reflexive relationship
 - checkedOutVersion
- Double relationship
 - caseCreated
 - caseDestroyed
 - With single update, status of all affected objects is changed

Conclusion

- Processes on polygon-based cadastral parcels can be modelled
- Transactional WFMS can ensure consistency
 - Application of ACID properties on a process level
 - Application of integrity constraints for spatial component
- Transactional WFMS can be integrated into LADM
 - General associations WF_Case <-> VersionedObject
 - Associations WF_Case <-> CP_Parcel
- Other approaches were tested
 - Optimistic
 - Altruistic

Further research

- Support for other spatial data structures such as topological
- Application of other (than ACID) correctness criteria
 - Such as relaxation of atomicity

Thank you. Questions?

